Nanoparticles as sorbents in analytical processes

Alina C. Ion*, Ion Ion*, Thomas C. Voice** *University Politehnica of Bucharest, Romania **Michigan State University, USA

Presentation Overview

- Definition
- History
- Properties
- Current Applications
- Manufacturing Techniques
- Future Applications
- References

Important History

- 1991 Discovery of multi-wall carbon nanotubes by S. lijima
- 1992 Conductivity of carbon nanotubes

J. W. Mintmire, B. I. Dunlap and C. T. White

• 1993 Structural rigidity of carbon nanotubes

G. Overney, W. Zhong, and D. Tománek

- 1993 Synthesis of single-wall nanotubes by S lijima and T Ichihashi
- 1995 Nanotubes as field emitters

By A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tománek,

- P. Nordlander, D.T. Colbert, and R.E. Smalley
- 1997 Hydrogen storage in nanotubes

A C Dillon, K M Jones, T A Bekkendahl, C H Kiang, D S Bethune and M J Heben

- 1998 Synthesis of nanotube peapods B.W. Smith, M. Monthioux, and D.E. Luzzi
- 2000 Thermal conductivity of nanotubes Savas Berber, Young-Kyun Kwon, and David Tománek
- 2001 Integration of carbon nanotubes for logic circuits P.C. Collins, M.S. Arnold, and P. Avouris
- 2001 Intrinsic superconductivity of carbon nanotubes
 M. Kociak, A. Yu. Kasumov, S. Guéron, B. Reulet, I. I. Khodos AR 2009

Carbon nanostructures

C₆₀

MWCNT

SWCNT

Graphite Nanoplatelets (xGnP*)

Graphite Nanoplatelets

Schematics of Graphite Nanoplatelet

- Exfoliation tremendously increases total surface area of graphite
- Exfoliated nanoplatelets have aspect ratio of 100
 ~1000 and are ideal for increasing mechanical properties
- Nanoplatelets increase conductivities

Processing

>Uniform dispersion of nanoplatelets >Ex-situ exfoliation: magnetic stirring and sonication >In-situ exfoliation: surfactants >Degassing at an elevated temperature to remove air >Curing followed by post curing

Comparison of nanoreinforcement properties

	Exfoliated Clay	Carbon Nanotube VGCF	Exfoliated h-BN BN Nanotubes	Cellulose Nanowhisker	xGnP-Graphite NanoPlatelets
PHYSICAL STRUCTURE	Platelet ~1nm x 100nm	Cylinder NT ~1nm X 100nm VGCF ~20nm X 100um	Layer	Needle-Whisker	Platelet ~1nm X 100nm
CHEMICAL STRUCTURE	SiO ₂ , Al ₂ O ₃ , MgO, K ₂ O, Fe ₂ O ₃	Graphene (chair, zigzag, chiral)	Boron Nitride	Cellulose	Graphene
INTERACTIONS	Hydrogen bond Dipole-Dipole	π - π	Hydrogen bond	Hydrogen Bond	π-π
TENSILE MODULUS	0.17 TPa	NT 1.0-1.7 TPa VGCF 0.25-0.5 TPa	~1 TPa	~ 130 GPa	~1.0 TPa
TENSILE STRENGTH	~1 GPa	(NT 180 GPa) VGCF 3-7 GPa	?	10 GPa	~(10-20 GPa)
ELECTRICAL RESISTIVITY	10 ¹⁰ – 10 ¹⁶ Ω cm	NT ~ 50 x 10 ⁻⁶ Ω cm VGCF 5-100 x 10 ⁻³ Ω cm	insulator	10 ¹⁰ – 10 ¹⁶ Ω cm	~ 50 x 10 ⁻⁶ Ω cm∥ ~ 1 Ω cm⊥
THERMAL CONDUCTIVITY	6.7 x 10 ⁻¹ W/m K	3000 W/m K (NT) 20-2000 W/m K (VGCF)	~3000W/m K	insulator	3000 W/m K ∥ 6 W/m K ⊥
COEF. THERMAL EXP.	8 – 16 x 10-6	-1 x 10-6	~1 x 10*	8 – 16 x 10-6	- <mark>1 x 10-6 </mark> 29 x 10 ^{-6 ⊥}
DENSITY	2.8 – 3.0 g/cm³	NT 1.2 – 1.4 g/cm ³ VGCF 1.8-2.1 g/cm ³	~2.0 g/cm ³	1.5 g/cm ³	~2.0 g/cm ³

BET Surface Area and Thickness of xGNPs

Adsorption of Organic Contaminants from Solution to xGNPs

Batch Adsorption/Desorption Study:

xGNPs large aggregates

xGNPs small aggregates

xGNPs colloidal particles AR 2009

What Happened During Adsorption?

Small Aggregates Organic contaminant Adsorption Clusters Aggregation & Contaminant Entrapment AR 2009

Fate of Contaminants Adsorbed to xGNPs (original results)

Will the sorption and desorption of organic compounds to xGNPs particles cause enhanced environmental contaminant transport?

Table 1. Concentration of xGNPs in NOM solutions and mass of NOM bound to unit mass of xGNPs

C xGNPs, mg/L	q _e SR- NOM	q _e humic acid	q _e fulvic acid
100	1.59	1.33	1.06
200	0.93	0.65	0.55
300	0.64	0.40	0.39
400	0.50	0.29	0.30

Fig. 4. Langmuir of adsorption of phenol and equilibrium adsorption uptake qe (mg/g) in the presence of NOM (50 mg/L) in aqueous solutions containing 400 mg/L xGNPs

Table 4. Percentage removal (% removal) of phenol and equilibrium adsorption uptake q_e (mg/g) in a 10 mg/L concentration of NOM in aqueous solutions containing 400 mg/L xGNPs

C _{i,phenol,} mg/L	C _{e,phenol} , mg/L	% removal	q _e , mg/g
100	20.56	79.85	187.45
200	40.25	79.87	347.28
300	59.60	80.13	488.52
400	91.19	77.20	701.28

Sorption of organic contaminants to xGNPs particles is the same as to soil organic matter and to activated carbon. When xGNPs particles migrate, contaminant transport will be enhanced. AR 2009

Table 2. . Effect of the concentration of the xGNPs in the solution on the percentage removal of phenol

C _{xGNPs,} mg/L	C _{i,phenol} , mg/L	C _{r,phenol} , mg/L	% removal
100	400	190.56	52.36
200	400	160.01	60.01
300	400	140.38	64.90
400	400	90.97	72.25

The sorption capacity of various sorbents for phenol at optimum pH values (original results)

Sorbent	Phenol, q _e , mg/g
Activated carbon	720
Activated sludge	236.8
Fly ash	3.85
S. muticum	4.6
Rice husk	42.2
Bentonite	1.712
Present work	702

Properties Enhancements and Applications with xGNPs

- Mass reduction (low density, low concentration);
- Increased stiffness (high aspect ratio);
- Increased toughness (engineered interfacial adhesion);
- Electrical conductivity;
- Thermal conductivity;
- Improved appearance;
- Surface conductivity (controlled deposition and alignement);

- Provides the information needed to assess whether this risk is substantial for nanoparticles disposed of in groundwaters.
- Yields the necessary parameters to understand the fate of engineered nanoparticles in the environment.
- Yields the necessary parameters for future development of risk assessment of the engineered nanoparticles.

References

M. Valcarcel et al., Trends in Anal. Chem., 27(1), 2008, 34-43

D. Lin, B. Xing, Environ. Sci. Technol., 42, 2008, 7254-7259

H. Hiung, J. D. Fortner, J.B. Hughes, J.H. Kim, Environ. Sci. Technol., 41, 2007, 179-184